Adenosine receptor agonists: synthesis and biological evaluation of 1-deaza analogues of adenosine derivatives

J Med Chem. 1988 Jun;31(6):1179-83. doi: 10.1021/jm00401a018.

Abstract

In a search for more selective A1 adenosine receptor agonists, N6-[(R)-(-)-1-methyl-2-phenethyl]-1-deazaadenosine (1-deaza-R-PIA, 3a), N6-cyclopentyl-1-deazaadenosine (1-deazaCPA, 3b), N6-cyclohexyl-1-deazaadenosine (1-deazaCHA, 3c), and the corresponding 2-chloro derivatives 2a-c were synthesized from 5,7-dichloro-3-beta-D-ribofuranosyl-3H-imidazo[4,5-b]pyridine. On the other hand, N-ethyl-1'-deoxy-1'-(1-deaza-6-amino-9H-purin-9-yl)-beta-D-ribofuranu ronamide (1-deazaNECA, 10) was prepared from 7-nitro-3-beta-D-ribofuranosyl-3H-imidazo[4,5-b]pyridine, in an attempt to find a more selective A2 agonist. The activity of all deaza analogues at adenosine receptors has been determined in adenylate cyclase and in radioligand binding studies. 1-DeazaNECA proved to be a nonselective agonist at both subtypes of the adenosine receptor. It is about 10-fold less active than NECA but clearly more active than the parent compound 1-deazaadenosine as an inhibitor of platelet aggregation and as a stimulator of cyclic AMP accumulation. The N6-substituted 1-deazaadenosines largely retain the A1 agonist activity of their parent compounds, but lose some of their A2 agonist activity. This results in A1-selective compounds, of which N6-cyclopentyl-2-chloro-1-deazaadenosine (1-deaza-2-Cl-CPA, 2b) was identified as the most selective agonist at A1 adenosine receptors so far known. The activity of all 1-deaza analogues confirms that the presence of the nitrogen atom at position 1 of the purine ring is not critical for A1 receptor mediated adenosine actions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine / analogs & derivatives
  • Adenosine / metabolism
  • Adenosine-5'-(N-ethylcarboxamide)
  • Adenylyl Cyclases / analysis
  • Aminoglycosides
  • Animals
  • Anti-Bacterial Agents / pharmacology*
  • Cattle
  • Humans
  • Rats
  • Receptors, Purinergic / drug effects*
  • Structure-Activity Relationship
  • Tubercidin / chemical synthesis
  • Tubercidin / pharmacology*

Substances

  • Aminoglycosides
  • Anti-Bacterial Agents
  • Receptors, Purinergic
  • 1-deazaadenosine
  • Adenosine-5'-(N-ethylcarboxamide)
  • Adenylyl Cyclases
  • Adenosine
  • Tubercidin